
A RENAISSANCE FOR DATA MANAGEMENT
IN HPC?

Simulation, Observation, and Software:
Supporting exascale storage and I/O

ROB ROSS Mathematics and Computer Science Division
Argonne National Laboratory
rross@mcs.anl.gov

29th International Conference on Scientific and Statistical Database Management, June 27, 2017

Renaissance – a revival of or renewed
interest in something

–1–

Trilab SGPFS Requirements

3/07/00
Abstract

The following is intended to serve as guidance for the SGPFS PathForward initiative. It
describes ASCI Trilab file system requirements, in particular we focus on the special
requirements of ASCI-scale systems. The usual requirements of any file system remain,
generally, in place. For example, requirements such as persistence, and stability will be
assumed. Beyond that, due to the nature of the machines served by the file system, there
are some “usual” requirements with a new or different twist as well as some that are
unusual. These requirements are, apparently, outside what the industry has in sight. All
requirements are prioritized as either Mandatory, Highly Desired, or Desired.

Thanks to G. Grider for digging this up! 3

–1–

Trilab SGPFS Requirements

3/07/00
Abstract

The following is intended to serve as guidance for the SGPFS PathForward initiative. It
describes ASCI Trilab file system requirements, in particular we focus on the special
requirements of ASCI-scale systems. The usual requirements of any file system remain,
generally, in place. For example, requirements such as persistence, and stability will be
assumed. Beyond that, due to the nature of the machines served by the file system, there
are some “usual” requirements with a new or different twist as well as some that are
unusual. These requirements are, apparently, outside what the industry has in sight. All
requirements are prioritized as either Mandatory, Highly Desired, or Desired.

Thanks to G. Grider for digging this up!

§ 2000s and early 2010s, focus was on the POSIX file system model
§ GPFS and Lustre dominate HPC deployments
§ Intellectual dark age for data management in HPC:

– Philosophy of maximizing compute
– Workload focus on simulation checkpoint/restart
– Architectural model fixed: PFS on storage nodes with disks
– (Much) Research focused on mitigating deficiencies
– Novel research got little traction

4

PUSH AND PULL DRIVING CHANGE IN HPC

5

• Hardware
technology

• Cloud and
enterprise
computing
software

• New science
applications

• New roles for
HPC

Also, data as a first class citizen as a guiding philosophy.

PUSH AND PULL DRIVING CHANGE IN HPC

6

• Hardware
technology

• Cloud and
enterprise
computing
software

• New science
applications

• New roles for
HPC

Also, data as a first class citizen as a guiding philosophy.

Metagenomics
High throughput analysis
of biological function
from DNA sequence data

Image courtesy of Chris de Marco (U-Wisconsin).

Micron Hybrid Memory Cube

dimension. The backplane connects each Aries to each of the
other 15 Aries within that chassis.

Figure 3. A Cascade chassis comprises 16 four-node blades with an Aries
per blade. The chassis backplane provides all-to-all connectivity between the
blades. Each blade provides 5 electrical connectors used to connect to other

chassis within the group. Each Aries also provides 10 global links. These links
are taken to connectors on the chassis backplane.

The second dimension, referred to as the Black dimension,
consists of three electrical links from each Aries within a
chassis to its peer in each of the other chassis within that
group.

Figure 4. Structure of a Cascade electrical group. Each row represents the 16
Aries in a chassis, with 4 nodes attached to each, and connected by the chassis

backplane (green links). Each column represents an Aries in one of the six
chassis of a two-cabinet group, connected by electrical cables (black links).

Figure 5. The global (blue) links connect Dragonfly groups together. In a

large system these links are active optical cables.

Groups are connected via optical links, referred to as Blue
links (Fig. 5). Each Aries provides 10 of these links for a total
of 960 per group. Blue links are combined into sets of 4 links,
which restricts the maximum size of the system to 241 groups
(92,544 nodes). The blue links use 12X Active Optical Cables

(AOCs) operating at 12.5 Gbps per lane. For small systems
electrical cables are used for the blue links.

The 4 NICs on each Aries connect to eight router ports for
packet injection into the network. When intra-group traffic is
uniformly distributed over one dimension, a portion will stay
local to each router: one part in 16 for the Green dimension
and one part in 6 for the Black dimension. The design of the
Cascade group (Fig. 4) ensures that the ratio of intra-group to
inter-group bandwidths meets or exceeds the factor of two that
is desirable for Dragonfly networks. With 10 optical ports per
Aries the global bandwidth of a full network exceeds the
injection bandwidth – all of the traffic injected by a node can
be routed to other groups.

D. System Configurations
Cascade systems are constructed from a number of 2-

cabinet groups, each containing 384 nodes. The global links
from each group are divided into bundles of equal size, with
one bundle from each group connecting to each of the other
groups. The number of inter group cables per bundle is given
by:

This number may be reduced substantially in systems that
do not require full global bandwidth. One advantage of
reducing the number of inter-group cables is that it makes the
systems easier to upgrade. For example, a six group (12-
cabinet) system might be initially configured with bundles of
12 optical cables, using 60 of the maximum of 240 ports
available. If the system is upgraded to eight groups (16-
cabinets) then new cable bundles are added, connecting the
new groups together and connecting each of the existing
groups to the two new ones. These cables can be added to
those in place without the need to rewire the system. The total
number of optical cables required is given by:

 () ⁄

Small and medium size systems can be upgraded with
single chassis granularity. All groups except the last must be
full. Larger systems must be comprised of a whole number of
cabinets or a whole number of groups.

III. CASCADE ROUTING
In a Cascade network request packets are routed from

source node to destination node. Response packets are
independently routed back to the source node; there is no
requirement for request and response traffic to follow the same
path. Packets are routed deterministically or adaptively along
either a minimal or non-minimal path. Minimal routing within
a group will always take at most one Green and one Black
hop. Minimal routing between groups will route minimally in
both the source and target groups, and will take exactly one
global (Blue) link. Note that minimal routing implies a direct
route between a source and a target, not the minimal number
of hops required. Minimal paths may differ in hop count if, for
instance, one routing path does not require a Green and/or
Black hop in the source and/or destination groups due to
placement of the Blue global link used between groups.

Cray Aries network (dragonfly)

by

DATA AS A FIRST CLASS CITIZEN

7

ulation workflows. In particular, the APEX team has analyzed a large proportion of the
simulation science workflows popular on existing supercomputers and has constructed an
overview of how a scientist leverages multi-physics simulation software, parallel tools, and
analysis software to improve the understanding of the physical world.

Figure 1: An example of an APEX simulation science workflow.

Figure 1 is an APEX workflow diagram that depicts the phases and data processing
common to most simulation science workflows. In the initial phase we see that the scientist
leverages a small input data set, typically curated over multiple campaigns, to construct a
set of initial simulation conditions. For example, the resulting initial condition data sets
are often a mesh representing a physical region of interest, where the physical regions of
interest may range from the surface of the earth and atmosphere for climate modeling or
massive regions of space to model galaxy collisions. Although phase 1 is only depicted once
in the diagram, it may occur multiple times during a proposal team’s campaign – though
rarely more than 3 - 5 times per project. Further, the construction of the mesh is a parallel
process and may use a moderate number of processors or it may use the entire machine. The
typical constraint for initial conditions creation is acquiring the amount of memory to store
the initial state and write it to file. Not surprisingly then, the generated input data set is
usually a large portion of the memory of the processors allocated to phase 1, often 80% of
the memory available to phase 1 jobs is written to storage.

3

From “APEX Workflows”, LANL, NERSC, SNL, SAND2015-10342
O LA-UR-15-29113, Nov. 24, 2015.

TRADITIONAL DATA SERVICES:
IMPLEMENTATION

§ Has a lot in common with
scalable Internet services

§ Key technologies: block
devices, sockets, pthreads,
kernel drivers

§ Operations take
milliseconds to complete

§ Checkpoint/restart workload

8

6/21/2017 old-world.svg

file:///Users/rross/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/60E7B6CA-AD24-4914-8791-1D1B0FDB7A03/old-world.svg 1/1

TCP/IP

Block

Devices

Few cores per node,

concurrency reduced further

by I/O forwarding

Service reference:

/mnt/foo
(unified, static mount point)

Dedicated application nodes Dedicated, remote service nodes

Figure courtesy P. Carns.

RDMA

NVRAM
devices

Many cores per node,
high concurrency

Service reference(s)
"Phil's K/V"
"Phil's objects"
"Phil's graph DB"
(multiple dynamic
services in user space)

Application nodes In-system service nodes
(possibly overlapping)

MODERN DATA SERVICES

9

§ Key technologies: NVRAM,
RDMA, dynamic services,
higher concurrency

§ Latency and jitter are more
apparent now than ever

§ Many deployment modes
§ Dynamic service

organization
§ Diverse workload

Dramatically different deployment environment.

Figure courtesy P. Carns.

RENAISSANCE IN HPC DATA SERVICES?

§Technology has forced a rethink of many service
implementations

§Aggregate workload not well suited by any one data
abstraction

§Cloud and enterprise have shown that many data services
can coexist and be composed to solve important problems

10

SPECIALIZATION OF DATA SERVICES

Application Data

SPECIALIZATION OF DATA SERVICES

12

Application

CheckpointsExecutables
and Libraries

Intermediate
Data Products

SPINDLE SCR
FTI

DataSpaces

MDHIM
Kelpie

MANAGING EXECUTABLES AND LIBRARIES

§ Characteristics:
– Can assume data doesn’t change during runtime
– High degree of sharing across application processes
– No need for redundancy in service (original stored elsewhere)

§ Opportunities:
– Dramatic reduction in parallel file system traffic
– Stripping of libraries on load
– Pre-staging of data (with scheduler integration)

§ SPINDLE is a great example of how to manage this data.

Dynamic libraries are a clean class of data to treat separately.

13
Frings, Wolfgang, et al. "Massively parallel loading."
ICS 2013, June 2013.

MANAGING CHECKPOINTS
§ Characteristics

– Typically bulk synchronous
– Write once, often not read

§ Opportunities
– Latency hiding
– Leveraging multiple layers of storage
– Adjusting rate/placement to match fault rates

§ Fault Tolerant Interface (FTI)
– Simple “snapshot” abstraction
– Manages all the layers for the user

14

L. Bautista-Gomez et al. "FTI: high performance fault tolerance
interface for hybrid systems." SC 2011. November 2011.
S. Di et al. "Optimization of multi-level checkpoint model for large
scale HPC applications." IPDPS 2014. 2014.

int main(int argc, char **argv) {

MPI_Init(&argc, &argv);
FTI_Init(“conf.fti”,

MPI_COMM_WORLD);

double *grid;
int i, steps=500, size=10000;
initialize(grid);
FTI_Protect(0, &i, 1,

FTI_INTG);
FTI_Protect(1, grid,

size,FTI_DFLT);

for (i=0; i<steps; i++) {
FTI_Snapshot();
kernel1(grid);
kernel2(grid);
comms(FTI_COMM_WORLD);

}

FTI_Finalize();
MPI_Finalize();
return 0;

}

File System:
Classic Ckpt.

RS Encoding:
Ckpt. Encoding

Partner Copy:
Ckpt. Replication

Local Storage:
SSD, NVM

MANAGING INTERMEDIATE DATA PRODUCTS
§ Characteristics:

– Data leaves application but not the
system

– Variety of different data
abstractions

– Producer-consumer model is
common

§ Opportunities:
– Exploiting locality
– Avoiding data movement off system
– More efficient synchronization

15

C. Docan et al. "DataSpaces: an interaction and coordination framework
for coupled simulation workflows." Cluster Computing 15.2 (2012).
C. Ulmer. “Leveraging In-Memory Key/Value Stores in HPC: Kelpie.”
Salishan 2013, April 2013.

Impact of coupling via ADIOS/DataSpaces on
XGC1/XGCa fusion application.
Material from S. Klasky (ORNL).

SPECIALIZATION FOR MANY-TASK WORKFLOW
§ Swift script controls execution –

generates an ADLB program (see below)
– Tasks can be basically anything (e.g., MPI code)
– Data dependencies are emitted as run proceeds

§ Asynchronous Dynamic Load Balancer (ADLB) manages data and work
– Distributed, data-dependent work queue
– Work units have (optional) priorities, types, and locality constraints
– Enables heuristic, coarse-grained data-aware scheduling, mixing user control

and automatic decisions
§ Applied in materials science, power grid, etc.

– E.g., transforming TBs of X-ray data from the Advanced Photon Sources,
streaming to compute nodes at 100 GB/s

J. Wozniak et al. "Swift/T: large-scale application composition via distributed-memory dataflow processing. CCGrid 2013.
E. Lusk et al. “More Scalability, less pain: a simple programming model and its implementation...” SciDAC Review, 2010.
F. Duro et al. “Flexible data-aware scheduling for workflows over an in-memory object store”. CCGrid 2016.

Application Data

SPECIALIZATION OF DATA SERVICES

17

Application

CheckpointsExecutables
and Libraries

Intermediate
Data Products

SPINDLE SCR
FTI

DataSpaces

MDHIM
Kelpie

ACCELERATING DATA SERVICE DEVELOPMENT

ROB ROSS, PHILIP CARNS, MATTHIEU DORIER,
KEVIN HARMS, ROB LATHAM, AND SHANE SNYDER

GARTH GIBSON, GEORGE AMVROSIADIS, CHUCK
CRANOR, SAURABH KADEKODI, AND QING ZHENG

JEROME SOUMAGNE
GALEN SHIPMAN, DAVID RICH, AND BRAD

SETTLEMYER

Argonne National Laboratory

Carnegie Mellon University

The HDF Group
Los Alamos National Laboratory

Pr
ov

is
io

ni
ng

C
om

m
.

Lo
ca

l
St

or
ag

e

Fa
ul

t M
gm

t.
an

d
G

ro
up

M

em
be

rs
hi

p

Se
cu

rit
y

ADLB
Data store and pub/sub. MPI ranks MPI RAM N/A N/A

DataSpaces
Data store and pub/sub. Indep. job Dart RAM

(SSD)
Under
devel. N/A

DataWarp
Burst Buffer mgmt.

Admin./
sched.

DVS/
lnet XFS, SSD Ext.

monitor
Kernel,

lnet
FTI
Checkpoint/restart mgmt. MPI ranks MPI RAM, SSD N/A N/A

Kelpie
Dist. in-mem. key/val store MPI ranks Nessie RAM

(Object) N/A Obfusc.
IDs

SPINDLE
Exec. and library mgmt.

Launch
MON TCP RAMdisk N/A Shared

secret

WHAT GOES INTO A DATA SERVICE?

OUR GOAL

§ Application-driven
– Identify and match to science needs
– Traditional data roles (e.g., checkpoint, data migration)
– New roles (e.g., equation of state/opacity databases)

§ Composition
– Develop/adapt building blocks

• Communication
• Concurrency
• Local Storage

– Enable rapid development of specialized services

Enable composition of data services for DOE science and systems

20

• Resilience
• Authentication/Authorization

COMMUNICATION: MERCURY

Mercury is an RPC system for use in the development of high performance
system services. Development is driven by the HDF5 Group with Argonne
participation.

§ Portable across systems and network technologies
§ Builds on lessons learned from IOFSL, Nessie, lnet, and others
§ Efficient bulk data movement to complement control messages

https://mercury-hpc.github.io/

21

Overview

Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes

Bulk data (more later) transferred using separate and dedicated API
– One-sided model that exposes RMA semantics

Network Abstraction Layer
– Allows definition of multiple network plugins
– Currently MPI, BMI (TCP/IB/GM), SSM (TCP/MPI/IB)
– More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

4

CONCURRENCY: ARGOBOTS

Argobots is a lightweight threading/tasking framework.
§ Features relevant to I/O services:

– Flexible mapping of work to hardware
resources

– Ability to delegate service work with
fine granularity across those resources

– Modular scheduling
§ We developed asynchronous bindings to:

– Mercury
– LevelDB
– POSIX I/O

https://collab.cels.anl.gov/display/argobots/

22

S

Scheduler Pool

U
ULT

T
Tasklet

E
Event

ES1 Sched

U

U

E

E

E

E

U

S

S

T
T
T

T

T

Argobots Execution Model

...

ES
n

GROUP MEMBERSHIP
§ Gossip-based detection

– Scalable, distributes the comm. load
– SWIM protocol is one example, rolls

membership in with detection
– Could introduce jitter…

§ Vendors could provide an “oracle” for
specific classes of faults
– Won’t necessarily know your service

is misbehaving
§ Replicated state machine for consistent

view of membership (if needed)
– PAXOS, RAFT, Corfu

23

A. Das et al. “SWIM: Scalable weakly-consistent infection-style
process group membership protocol.” DSN ’02. 2002.
D. Ongaro et al. "In search of an understandable consensus
algorithm.” USENIX ATC 14. 2014.

SWIM protocol with 2K nodes, 30 minutes
of simulated time. Subgroup size
determines number of peers that follow
up on a failed ping.

AUTHENTICATION AND AUTHORIZATION

§ Integrate with external
authentication
(Kerberos, LDAP)

§ Capability-based approach
– Caching, delegation to

improve scalability
§ Building off LWFS work and

follow-on activities with L. Ward
(SNL) and R. Brooks (Clemson)
– Mercury prototype

Services intending to replace parallel file systems must provide
(scalable) access control.

24
R. Oldfield et al. "Lightweight I/O for scientific applications.” Cluster
2006, 2006.

RAPID DEVELOPMENT OF NEW
DATA SERVICES
§ Provide the building blocks for the

next generation of HPC services
§ Toolkit of interoperating

components
– Solutions to hard problems
– Integration with related tech.

§ Work with vendors, apps, facilities
§ Lower the barrier of entry

– Teams casually build new
services

25

A Software Defined Storage Approach to Exascale Storage Services

&URVV�&XWWLQJ�([DVFDOH
7HFKQRORJLHV

3ULPDU\�6WRUDJH
SDUDOOHO�ILOH�V\VWHPV��GDWD�ODNH

26���5XQWLPH���5HVRXUFH�0JPW
$UJR��+REEHV��&UD\��&REDOW

6FLHQWLILF�:RUNIORZ�0JPW
6ZLIW��/HJLRQ��3HJDVXV��(26

1RQ�9RODWLOH�1RGH�/RFDO�0HPRU\
195$0��66'

1RQ�9RODWLOH�%XUVW�%XIIHU
195$0��66'

$SSOLFDWLRQ�5HVLOLHQF\
)7,��6&5

6HUYLFH�'HVLJQ�'ULYHUV
LQIRUPHG�E\�VFLHQFH��OLEUDU\��V\VWHP
66,2�QHHGV�DQG�VHPDQWLFV

,QWHQW�GULYHQ�6WRUDJH
SHUVLVWHQFH��FRQVLVWHQF\��UHVLOLHQF\��YLVLELOLW\

2EVHUYDELOLW\�,QWHUDFWLYLW\
UXQWLPH�VWHHULQJ�PRQLWRULQJ��SURILOLQJ�
GHEXJJLQJ

0XOWL�XVHU�&DSDELOLW\
LQWHU�DSS�ZRUNIORZV��VKDUHG�VHUYLFH�DFFHVV��
VHFXUH�DFFHVV

6RIWZDUH

$UFKLWHFWXUH

&RXSOLQJ��,Q�VLWX�,Q�WUDQVLW
&DWDO\VW��'DWD6SDFHV��*/($1��9LVLW�OLEVLP

5XQWLPH�3URJ��$QDO\VLV�6WHHULQJ
'HEXJ��*ODGLXV��''7��$OOLQHD���&KDUDFWHUL]DWLRQ��'DUVKDQ�

3RWHQWLDO�LQWHUVHFWLRQ�SRLQWV�ZLWK�26�UXQWLPH

&RPSRVLWLRQ

&RRUGLQDWLRQ

%DVH�&RPSRQHQWV

6RIWZDUH�'HILQHG�6WRUDJH�6HUYLFHV

,QWHJUDWRU�7HFKQRORJLHV
+')���/HJLRQ��97.�P

$XWK�$XWK

%$.(
EDVH�VWRUDJH�DEVWUDFWLRQ

0HUFXU\�53&

'LVWULEXWHG
1DPHVSDFH

5HVLOLHQW�'LVWULEXWHG�6WRUH

*URXS�0JPW

'DWD�([SRUW�,PSRUW

$SSOLFDWLRQ�'ULYHUV

5HVLOLHQF\
EXON�DV\QF�&�5�QDPHVSDFH��03$6���+27��
,0&���WDVN�PRGHO�UHVLOLHQF\��/HJLRQ�$05�

([SORUDWRU\�$QDO\VLV
GDWD�PRGHO�PDSSLQJ�WUDQVIRUPDWLRQV��
LQGH[�TXHU\��/HJLRQ��+')��

(PHUJLQJ�3DUDGLJPV
SURGXFHU�FRQVXPHU��FRGH�FRXSOLQJ��³VHPL�
SHUVLVWHQW´�VWRUDJH��(26��RSDFLW\�GDWD�IRU�
SK\VLFV�

3XE�6XE

Figure 2: This project exists in a complex hardware/software ecosystem, with cross-cutting technologies (left) and ap-
plication and usability drivers (right) providing constraints on possible designs. The decomposition of storage services
we will pursue (center) is discussed in § 3.

the use of temporary services for management of data in many-task workflows on HPC systems [46] using
an enhanced version of memcached [49], and the use of distributed hash tables (DHTs) for presenting a
file-system-like model to applications using system memory [158], including using DHTs for storing meta-
data [88]. Approaches such as these demonstrate that these resources can be tremendously advantageous
for scientific codes, particularly when a service layer is added that organizes the resources to fit applica-
tion needs. However, resilience and access control capabilities demonstrated in research so far do not meet
requirements for more pervasive use.

The Scientific Data Services project [41, 42] is examining another aspect of this problem, namely, providing
data reorganization and query capabilities for data in the popular HDF5 format. This layers on the existing
parallel I/O software stack. Another form of storage service is software designed for managing movement
of data between compute nodes and the PFS, possibly using in-system storage resources for buffering.
The Cray Data Virtualization Service (DVS) is one example of software in this space [135], the IBM ciod
system in the Blue Gene series of systems is another. These effectively replay I/O operations from clients on
intermediate nodes, thus providing a limited security mechanism. Our work on the IOFSL project developed
a similar I/O forwarding capability [10]. In all these cases, the purpose of the service is simply to provide
access via a file model to an external file system, although extending such a system to manage buffering
would be relatively simple.

Features of PFS designs such as data protection and access control are clearly required of storage services but
are not typically considered in HPC data “service” research activities. Given the performance and reliability
issues being seen with best-in-class PFSs today (§ 2.2), extending the PFS model to manage these new
resources does not appear to be a promising approach. Building numerous one-off service implementations
is not scalable from a development or maintenance perspective. A new path is needed that provides needed
capabilities, meets performance goals, and enables reuse of components. In the next section we will discuss
our SDS approach and describe how we address the deficiencies of existing HPC solutions.

7

REMOTELY ACCESSIBLE OBJECTS
§ API for remotely creating, reading, writing, destroying fixed-size objects/extents
§ libpmem for management of data on device
§ < 10 usec accesses over FDR IB backed to RAM

26

Argobots

Mercury
CCI

IB/verbs

Argobots

Mercury
CCI

libpmem RAM,
NVM,
SSD

Client app
Object API

Target

Margo Margo

P. Carns et al. “Enabling NVM for Data-Intensive
Scientific Services.” INFLOW 2016, November 2016.

REMOTELY ACCESSIBLE OBJECTS:
HOW MUCH LATENCY IN THE STACK?

 0

 10

 20

 30

 40

 50

B
a
n
d
w

id
th

 (
G

iB
/s

)

Read

general node allocation median
leaf switch node allocation median

projected

 0

 10

 20

 30

 40

 50

24(2)

48(4)

72(6)

96(8)

120(10)

144(12)

168(14)

192(16)

B
a
n
d
w

id
th

 (
G

iB
/s

)

Client procs (client nodes)

Write

general node allocation median
leaf switch node allocation median

projected

Figure 4: Median aggregate bandwidth with 8 servers.

3 Preliminary evaluation

All experiments presented in this paper were conducted
on the Cooley Linux cluster operated by the Argonne
Leadership Computing Facility. Each node contains two
2.4 GHz Intel Haswell E5-2620 v3 processors (12 cores
total) and 384 GiB of RAM, and the nodes are connected
via an FDR InfiniBand network fabric. All software was
compiled with GCC 4.4.7 and O3 optimizations. The
libpmem libraries were configured to use tmpfs volumes
(i.e., conventional DRAM) as the backing store for ex-
perimental purposes in lieu of true NVM devices. Fig-
ure 3 shows the baseline asynchronous point-to-point
network bandwidth for a logarithmic range of message
sizes as measured using the mpptest benchmark [9] and
the MVAPICH2 MPI implementation, version 2.1. This
benchmark also exhibited a one-way latency of 1.3 mi-
croseconds for the smallest message sizes.

3.1 Aggregate concurrent bandwidth

We augmented the IOR benchmark [19] to use our proto-
type object storage API in order to evaluate aggregate I/O
throughput. This action necessitated two key changes
to IOR: adding an “aiori” module for our storage ser-
vice and modifying the core benchmark to allow modules
other than the POSIX module to issue fsync() operations.

Figure 4 shows the write and read bandwidth reported
by IOR as we hold the number of server nodes (and
thus the number of server daemons) fixed at 8 and vary
the number of client nodes from 2 to 16. There are 12
processes per client node in all cases. Each experiment
was repeated 30 times; box-and-whiskers plots show the

 1

 10

 100

 1000

noop
 1 2 4 8 16

 32
 64

 128
 256

 512
1 KiB

2 KiB
4 KiB

8 KiB
16 KiB

32 KiB

64 KiB

128 KiB

256 KiB

512 KiB

1 M
iB

C1 C2

L
a
te

n
cy

 (
u
s)

Access size (bytes)

Write
Read

Figure 5: Median sequential access latency with one
client and one server.

minimum, maximum, median, first quartile, and third
quartile for each set of measurements. IOR was config-
ured with the following parameters: a block size (total
data volume per process) of 6 GiB, a transfer size of 16
MiB, fsync enabled (to flush data at the conclusion of
each write phase), data validation enabled, and file-per-
process mode (which in our service equates to one object
per process).

Our initial experiments, labeled “general node alloca-
tion,” exhibited a high degree of variability. This phe-
nomenon can be attributed to suboptimal routing within
the Infiniband switch, which is a multistage switch rather
than a true crossbar [12]. We repeated the experiments
on a set of 18 nodes explicitly chosen to be co-located
on a single leaf switch in order to confirm this behavior.
These results, labeled “leaf switch node allocation,” ex-
hibit comparatively little variability, but the switch topol-
ogy only allows us to scale up to 10 client nodes in
this configuration. We also plot the projected aggregate
bandwidth for comparison; this was calculated by mul-
tiplying the maximum baseline point-to-point bandwidth
from Figure 3 by the minimum of the number of server
or client nodes. Our prototype is capable of saturating
the network bandwidth in each tested configuration.

3.2 Single-client latency

We constructed a microbenchmark that performs a series
of sequential I/O operations from a single client to a sin-
gle object to measure latency. It does not include data
persistence or flush primitives, but each I/O access in-
cludes at least one round-trip network operation, at least
one user-level thread creation and tear-down, and at least
one libpmem memory access. The median access latency
with a 95% confidence interval (calculated using the non-
parametric method recommended in [10]) out of 10,000
samples for each access size is shown in Figure 5. We
also plot the round-trip latency of a noop request on the
left side of the x axis for comparison.

We also annotate two protocol crossover points in the

FDR IB, RAM disk, 2.6 usec round-trip (MPI) latency measured separately

5.8 usec
NOOP

TRANSIENT FILE SYSTEM VIEWS: DELTAFS
Supporting legacy POSIX I/O in a scalable way.

App proc App proc Deltafs
server proc

Deltafs
server proc

ls -l

Deltafs comm world
All procs are user-space, and run on compute nodes

tail -F
…… …

Deltafs lib Deltafs lib

/deltafs

load snapshot(s) dump snapshot(s)1 5

2 RPC deltafs servers
for metadata

3 directly access
file data

Deltafs fuse

4 monitor
progress

28Q. Zheng, et al. "DeltaFS: Exascale file systems scale better
without dedicated servers." PDSW 2015. November, 2015.

COMPUTATION CACHING AS A SERVICE

J. Jenkins, G. Shipman, J. Mohd-Yusof, K. Baros, P. Carns, and R. Ross.
“A case study in computational caching microservices for HPC.” IPDRM 2017. June, 2017.

Coarse-scale model
e.g., Lulesh continuum:
- Lagrangian hydrodynamics
- Unstructured mesh

Fine-scale model
e.g., Viscoplasticity [1]:
- FFT based PDE solver
- Structured sub-mesh

R. Lebensohn et al, Modeling void growth in
polycrystalline materials, Acta Materialia,
http://dx.doi.org/10.1016/j.actamat.2013.08.004.

Sh
oc

kw
av

e

§ Multi-scale models simulate
physical phenomena across
multiple time and length scales

§ As an example: Loosely coupling
continuum scale models with more
realistic constitutive/response
properties
§ We use the CoEVP proxy

application from the ExMatEx
project as our case study

MULTI-SCALE SIMULATION

30

Coarse-scale model

Fine-scale model

Sh
oc

kw
av

e

§ Phenomena such as shock waves
propagate through the coarse-scale
model

§ Sometimes requires recomputation
of similar (or identical) fine-scale
models

This is an opportunity for optimization:

If the fine-scale model is expensive,
then it may be effective to cache its
fine-scale results for later reuse

ACCELERATING SIMULATION WITH
COMPUTATION CACHING

Fine-scale model

31

32

§ The existing application uses a per-
process cache

§ Reimagine computation cache as a
distributed service
– Shared cache leads to greater hit rate
– Sharing computation cache across

jobs
– Possibility of persisting DB
– More deployment flexibility (e.g. for

NVM nodes)
– Reuse code base in other applications

Import/export
DB instances

Distributed DB

Application domain

Query 6D space for
nearest neighbors

THE CASE FOR A COMPUTATION CACHING
SERVICE

Coarse-scale model

Sh
oc

kw
av

e
§ Search cache for nearest neighbors in multi-dimensional parameter space,

interpolate, and check error bounds
§ Eventual consistency is a natural fit

COMPUTATION CACHING AS A SERVICE

Success

Search cache

Failure
(run fine-scale model

and update cache)

Interpolate

Distributed DB

33

WRAPPING UP

SSDBM AND THE RENAISSANCE

§ Technology
– Extreme heterogeneity (Nowell)
– Join operations on GPUs (Rui et al.)
– Sensor data streams (Gorenflo et al.)

§ Data management
– Publish-subscribe based storage (Qader el al.)
– In-database linear algebra (Qin et al.)

§ Analytics
– Real-time data analysis (Shein et al.)
– On-line analytics (panel)
– Theory guided data science (panel)

Many places where SSDBM supports the renaissance

35

A DATA SERVICE ECOSYSTEM

§ New technologies, architectures, and applications call for new building
blocks

§ Speed up development and ease maintenance by sharing code
– Focus development on specifics for use case
– Specialize/optimize only the performance critical parts

§ Share not only low-level building blocks, but microservices:
– Compose and augment to serve use case

§ http://www.mcs.anl.gov/research/projects/mochi/
– Thanks to many at ANL, The HDF Group, LANL, and CMU

Enable broader community to build better, more
capable user-level data services than possible today.

36

THANKS!

THIS WORK IS SUPPORTED BY THE DIRECTOR, OFFICE OF ADVANCED
SCIENTIFIC COMPUTING RESEARCH, OFFICE OF SCIENCE, OF THE U.S.
DEPARTMENT OF ENERGY UNDER CONTRACT NO. DE-AC02-06CH11357.

Phil Carns Matthieu Dorier Kevin Harms Rob Latham Misbah Mubarak Shane SnyderTom Peterka

